
Exam 2 Study Guide

Math 290 students are responsible for the following topics, highlighted in blue, that will be covered in
Exam 2. The format of Exam 2 will be similar to that of Exam 1, namely, the exam will be comprised of
True-False and short answer questions and problems that require solving equations or calculating quantities
associated with various matrices. Studying highlighted statements or statements deemed to be important in
the class slides is a good way to prepare for the True-False and short answer questions.

0. Calculating determinants. Knowing methods for calculating determinants is important for the topics that
follow.

1. Eigenvalues, eigenvectors, and diagonalizability of square matrices. Let A be an n× n matrix.

(i) The real number λ is an eigenvalue of A is there exists a non-zero vector v ∈ Rn such that
Av = λv. In this case, v is an eigenvector associate to λ.

(ii) The eigenvalues of A are the roots of cA(x), the characteristic polynomial of A. cA(x) = det[xIn−A].
(iii) For a given eigenvalue λ, the λ-eigenvectors are the non-zero vectors in the null space of the matrix

λIn − A. The basic solutions in this null space are basic λ-eigenvectors and form a basis for the
eigenspace Eλ.

(iv) If A is an n× n matrix, then, by definition, A is diagonalizable if there exists an invertible matrix
P such that P−1AP = D, where D is an n× n diagonal matrix.

(v) If A is diagonalizable, the diagonal entries of the matrix D in (iv) are the eigenvalues of A.
(vi) Suppose cA(x) = (x− λ1)e1 · · · (x− λr)er , then the eigenvalue λi has multiplicity ei.
(vii) A is diagonalizable if and only if cA(x) = (x − λ1)e1 · · · (x − λr)er and for each eigenvalue λi, ei

equals the dimension of Eλi
.

(viii) If A is diagonalizable, then the diagonalizing matrix P is obtained by taking the matrix whose
columns are the collection of basic eigenvectors derived from A.

2. Applications of diagonalizability of square matrices. Suppose A is diagonalizable, with P−1AP = D, a
diagonal matrix.

(i) A = PDP−1, and therefore An = PDnP−1, for all n ≥ 1.
(ii) For any square matrix B, eB is the matrix given by the Taylor Series:

∑∞
n=0

1
n!B

n.

(iii) If D = diag(λ1, . . . , λn), then eD = diag(eλ1 , . . . , eλn).
(iv) For A diagonalizable, eA = PeDP−1.
(v) Solving recurrence relations: A sequence of non-negative numbers a0, a1, a2, . . . , ak, . . . , is called a

linear recursion sequence of length two if there are fixed integers α, β, c, d such that:
(i) a0 = α.

(ii) a1 = β.
(iii) ak+2 = c · ak + d · ak+1, for all k ≥ 0.

To find a closed form solution for ak, let vk =

[
ak
ak+1

]
, and A =

[
0 1
c d

]
. Then vk = Ak · v0, and ak

is the first coordinate of the vector vk.
(vi) Solving systems of first order linear differential equations: Let A = (aij), be an n × n matrix. A

system of first order linear differential equations is a system of equations of the form:

x′1(t) = a11x1(t) + · · ·+ a1nxn(t)

x′2(t) = a21x1(t) + · · ·+ a2nxn(t)

... =
...

x′n(t) = an1x1(t) + · · ·+ annxn(t),

where xi(t) is a real valued function of t. The numbers x1(0), · · · , xn(0) are called the initial con-
ditions of the system. In matrix form, the system is given by the equation: X′(t) = A ·X(t). The
solution to the system is given by: X(t) = eAt ·X(0).
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3. Spanning sets, linear independence and bases in Euclidean space. Let v1, . . . , vr, w be columns vectors
in Rn. Let A = [v1 v2 · · · vr], the matrix whose columns are v1, . . . , vr. Then:

(i) w belongs to span{v1, . . . , vr} if and only if the system of equations A ·X = w has a solution.

(ii) If

λ1...
λn

 is a solution to A ·X = w, then w = λ1v1 + · · ·+ λrvr.

(iii) v1, . . . , vr are linearly independent if and only if A ·X = 0 has only the zero solution.

(iv) If v1, . . . , vr are not linearly independent and

λ1...
λn

 is a non-zero solution to A ·X = 0, then

(∗) λ1v1 + · · ·λrvr = 0.

This means the vectors v1, . . . , vr are linearly dependent, and thus redundant.
(v) One can use (*) to write some vi in terms of the remaining v’s. Upon doing so:

span{v1, . . . , vi−1, vi+1, . . . , vr} = span{v1, . . . , vr}.
(vi) One may continue to eliminate redundant vectors from among the vi’s. As soon as one one arrives at

a linearly independent subset of v1, . . . , vr, this set of vectors forms a basis for the original subspace
span{v1, . . . , vr}. The number of elements in the basis is then the dimension of span{v1, . . . , vr}.

(vii) To test if the n vectors v1, . . . , vn in Rn are linearly independent, or span Rn, or form a basis for Rn,
it suffices to show that det[v1 v2 · · · vn] 6= 0.
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